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The hydrogen molecule ion in the old quantum theory 
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The ground state of the H~- molecule is studied using the equations of classical 
mechanics and the Einstein quantum condition, Jc + Jr = h, where J~ and Jr  
are the action integrals over a complete cycle of the elliptic coordinates. 
Strong bonding is found, but the quantitative results are good only for R < 0.05 
and R > 4a0. The greatest error comes at Req and results from the coalesence 
of two classically allowed regions where the electron can exist. 
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1. Introduction 

In spite of the undoubted superiority of wave mechanics, there is still considerable 
interest in applying classical and semiclassical methods to atomic and molecular 
systems. There are two valid reasons for this: one is to obtain a clearer understand- 
ing of the relationship between classical and quantum mechanics; the other is to 
find reasonably accurate models that are more easily solved than exact quantum 
mechanical treatments. In this spirit the present work deals with the hydrogen 
molecule ion, H~, using the method of the old quantum mechanics [1]. 

Recently it was shown that the old quantum theory gives remarkably good 
energies for two and three electron atoms [2]. An innovation was introduced in 
that the definite classical orbits of Bohr and Sommerfeld were replaced by 
probability distribution functions for the electrons, in keeping with the Uncer- 
tainty Principle. However  the distribution function comes entirely from the 
classical equations of motion. Bohr 's  original quantum condition was used in the 
form 

nh~, 
- E  = (T) = - ~ -  (1) 
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However  this was interpreted as an expression of the De Broglie wavelength 
relationship with ( T ) =  vh/2A, where v/v is a path length, l, for the periodic 
motion, equal to hA. 

It is of great interest to see if a similar treatment can be extended to diatomic 
molecules. The hydrogen molecule ion is, of course, the prototype of such 
molecules. If it cannot be solved, then chemical bonding is not understandable 
in terms of the old quantum theory. Actually Bohr did attempt the solution of 
the hydrogen molecule with rather mediocre results [3]. However his model is 
not an appropriate one since the electrons were placed in a definite orbit with 
angular momentum about the internuclear axis. 

The Bohr model was applied in a more realistic fashion to H2 ~ by W. Pauli, in 
his doctoral dissertation [4]. The results were very poor, since no bonding was 
found. Pauli used confocal elliptic coordinates, 

r rA--rB ; ~ =  ; r  
R R 

which allows the classical Hamiltonian to be separated. However the Sommerfeld 
quantum condition was used for each action integral, J. 

J~= ~ pr h=~ p~,dlz =J~. (2) 

This quantum condition is notoriously unreliable, even for the hydrogen atom. 

2. The classical treatment 

Pauli found the classical distribution function for the electron, 

f p-p;~(~2_l)p~(l_j. 2), pdT= l (3) 

His procedure is rather lengthy. Eq. (3) can be quickly derived from a JWKB 
manipulation of the separated quantum mechanical Hamiltonian, retaining only 
the classical term. Considering only the states where p4 = 0, the classical momenta 
are given by 

( ~ )  1/2 ~B;_ ;2 ql/2 
P ' :  \ 7 - - (  ] (4) 

P " :  (5) 

where B = - 4 / R E e ~  and C is a separation constant. In Eqs. (4) and (5), and 
henceforth, atomic units are used, so that e = m = ao = 1, and h = 2~r. 

The constant C is related to a constant of the motion found for two attracting 
centers and first pointed out by Hill and Erickson [5]. Using their results, C 
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becomes 

2LA" LB 2(cos 0A--COS 0B) 
C = - 1 EetR 2 EeIR (6) 

where L A ( L ~ )  is the angular momentum vector of the electron about nucleus 
A(B),  and OA(OB) is the angle between the vector rA(rB) and the positive z axis. 
When R is sufficiently large, C is approximately -1 .  As R approaches zero, C 
becomes positive. At R = 0, LA �9 L~ -= l ( l +  1) and C is positive infinity. 

The values for Pc and p ,  determine the motions of the electron. The orbits are 
contained within the boundaries generated by the positive values of p~ and p,. 
Strand and Reinhardt have given a semiclassical treatment of H~- (JWKB method) 
[6]. Their paper includes figures of a number of the possible classical orbits. 

For the ground state of H~, Fig. 1 shows the two possible solutions. Fig. la  is 
for the case where C is positive. Then/x goes from +1 to - 1  (complete range), 
and ~" from +1 to ~'0, where 

B • ( B 2 - 4 C )  1/2 
~o = (7) 

2 

Fig. lb  shows the case where C is negative. Then/x ranges from • to •  
while ~" has the same range as before. The possible orbits fill up the shaded areas 
of the figures. The distribution function, p, in Eq. (3) gives the probability of 
finding the electron at any point ~,/x. Since it is independent of the angle 4~, the 
distribution is axially symmetric. 

Fig. la  describes the situation when the two nuclei are close together. It clearly 
has a strong resemblance to the square of the bonding 1 o-g molecular orbital of 
H~-. Fig. lb  superficially resembles an anti-bonding electron distribution, since 
the electron density at the mid-point is zero. However it still is a bonding 
distribution corresponding to l o g  when the nuclei are far apart. Classically the 
electron would be trapped in one of the shaded areas only, through the dis- 
tribution function, p, would be symmetric as shown. For classical orbits corres- 
ponding to higher states of H~, reference should be made to Strand and Reinhardt 
[6], or to Born [7]. The analogies to the corresponding molecular orbitals are 
very striking. 

Eq. (3) can be used to find the average value of various properties of H~, e.g. 

[~22 2\ 9n 4~'] 1 [ (~2--  1)p~ + ( 1 - - / x  ~p;j-~-j (8) H = (~2_/x2) 

Fig. L Classical orbits for ground state of H~ 
(a) when C is positive; (b) when C is negative. 
Electron is constrained to be in shaded areas [o1 (b) 
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--"=--=----=~4Pc{ ~2-1 ~, tZ =4p~[ 1- t~2~ 
~=R, \(~_.~J" R 2 \~2-1x2 ]" (9) 

The mean frequencies can also be found 

(r 
uc = 2(~o_ 1), u. =2(At O. (10) 

The factor of two comes in because a complete cycle must be taken. The range 
of At~ is +1 to - 1  or +1 to ~/L-~, depending on C being positive or negative. 
It will be shown that uc is usually not equal to v~, nor simply related. This accounts 
for the orbits not being simple ellipses or figure eights, and why the orbits fill 
up the shaded areas of Fig. 1. The situation in atoms is quite different, since 
vr = Uo = v~ [2]. 

3. The quantum condition 

So far the treatment is classical and any values of Eel a r e  possible, within reason. 
Quantum conditions must now be introduced to give definite energies, as well 
as a discrete number of states for p+ =0.  The quantum condition (1) is not 
immediately applicable because the proper value of u is not obvious. The tempta- 
tion is to write 

(T)=huc+ hu~ (11) 
2 2 

but this would be correct only if the frequencies were independent. The two 
frequencies, while different, are not independent, being linked by the common 
values of B and C. 

As stated earlier, the assumed basis fo Eq. (1) is the De Broglie wavelength 
relation, Z = h/my. To see how this is used when there are two different but 
dependent frequencies, consider the general case of two orthogonal coordinates, 
A and B, with velocities VA and vs and path lengths IA and IB for a complete 
cycle in each coordinate. Also let JA and JB be the action integrals over these 
cycles. Classically [7] the mean kinetic energy can be written as 

(T)=JAPA 2 JBI"B( = ~ v-) (12) 

where UA = VA/lA and UB = VB/IB. If UA = US, then it is logical to assume v = VA = 
VB. This gives rise to the Einstein quantum condition [8]. 

JA + JB= nh= E J q. (13) 
q 

This is obviously the correct condition to use in the atomic case, 

E Jq = [ ( n -  k) + ( k -  m) + m]h = nh (14) 
q 

where k can have the non-integral value of .,/l(l+ 1). Note that Eq. (14) is valid 
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for the ground state of H, where n = 1 and k = m = 0. The orbit is a degenerate 
line ellipse. 

Introducting the De Broglie relation, so that v 2 = hplA/A A and v 2 = hvlB/AB, it 
is found that 

IA + IB = n. (15) 
AA AB 

Assuming that this relation is valid, even if UA ~ US, we find using Eq. (12) that 
Eq. (13) is regenerated. The mean frequency is simply 

JAlJA + JBI.'B JAI.'A + JBPB 
u - (16) 

nh JA + JB 

The individual frequencies are weighted by their action integrals, which seems 
reasonable. 

The general quantum condition, JA+JB = nh, gives only a single restriction 
whereas we have two constants, B and C. The virrial equation can be used to 
give a second condition. 

(OEel~ (17) ( Vel ) -~" 2Eet + R \ - - ~ ] .  

This is by no means a convenient condition, but has the advantage of not 
introducing any further quantum assumptions. Eq. (17) is exact for classical 
mechanics, as well as for quantum mechanics. The modification introduced by 
Slater [9], adding the term R(OEeJOR), is general and does not depend on 
quantum mechanics. 

Furthermore,  we know that in the limits, R = 0 and R = co, the last term of Eq. 
(17) vanishes and (Vel)= 2Eez. Since the old quantum theory gives exact answers 
for both H and He +, we have secure starting and finishing points. It also turns 
out that at large R the term in LA" LB in Eq. (6) can be ignored so that an 
independent evaluation of C is possible. 

Since we are mainly interested in knowing whether the old quantum theory gives 
results that are reasonably accurate, we can also take advantage of the known, 
exact values for the ground state of H~- to use as guidelines. In particular, the 
exact values of (Vel), as well as Eet, are known from the calculations of Wind [10]. 

4. Calculations 

To make calculations, it is necessary to evaluate five integrals. 

f ~o ~'2d~ 
11= 1 ( B ~ - ~ 2 - C ) 1 / 2 ( ~ 2 - 1 )  1/2 

leo fide" fl 0 d~" 
I2= 1 (Br 13= (B~_~2_C)1/~(~2_1),/~ 
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f l d/& f /* 2d/x 
14 = 2 1/Tg _1.s /5 = Jo,,/_c(/X + c )  (1 Jo,, /-c(tx2+c)a/2(1-tz2) 1/2" 

These integrals can be evaluated in terms of elliptic integrals of the first, second 
and third kinds [6]. For positive C it is found that 

I4=K/(1+C)1/2; I s = E ( I + C ) I / 2 - K C / ( I + C )  1/2 

where K and E are complete elliptic integrals of the first and second kinds of 
the modulus (1 + C) -1/e. For negative C, 

/ 4 = K ;  h = E  

where the modulus is (1 + C) 1/2. For all values of C, 

I3 = ( 2 ) t/2 g'  m~ = [ ( ' ~  l )(~~ W l - X) ] 

where X = (B2-4C) 1/2. The expressions for I1 and /2  are so complicated that 
it is easier to evaluate them by Gaussian quadrature. 

The value of (Vet) is found using Eq. (3). 

4~ dg"&, (Vel)=~gN ff I (B~-~2-C)1/2(~2-1)1/2([~2..l-C)1/2(1-1d,2) 1/2 
-4/2/4 BEerI214 

= R (11/4 - 1315) - (IlI4 - 1315)" (18) 

The normalization constant is (Ili4-I315) -1. 

The action integrals are found to be 

Jr = R ( - 2 E e I ) I / 2 (  B I 2  -- CI3 -- 11) 

J,, = R (-2Ee,)1/2(CI4 + Is)(f) (19) 

where the factor f is two for J,, when C is positive. Otherwise the factor is one. 
The frequencies are 

(-2Ee,) 1/214 (-2Eel) 1/213 
Vr v~, =R( I lh - I3 I s ) ( f )  (20) 

where again the factor of two is used in the denominator for v,, when C is 
positive, and one otherwise. 

An equation for the energy can be written in the convvenient form 

h 2 
(21) - E e l - 2 R 2 ( j }  + fj, ,  )2 

where J} = BI2-  (713 - 11, and J~, = CI4 + 15. 

At R = 0 it is more convenient to evaluate the action integrals directly. Since 
r  and / z - c o s  0, only Jt contributes and J ,  =0.  If C is no larger than 
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1/R, than Jr becomes identical with Jr for He + in its ground state. That is, Jr = h 
and -Ee;  -- 2.00 a.u. 

At R = ~ ,  the value of C can be found from Eq. (6). If the electron is on nucleus 
A, then (cos 0A)=0 and ( -cos  0B)-- l ,  or C=-1+B/2 .  The values of 14 = 
r r /2+  ~rB/16, 15 = Ir/2-orB~16 and 13 = I r / 2 +  rrB/16 can now be found by an 
expansion of the complete elliptic integrals when the modulus is small. Also I~ 
and 12 may be estimated from I1 = 12(r 1)/2 and 12 = 13(r 1)/2, where r = 
1 +B/4. This gives I1 = rr/2+37rB/16 and 12 = ~v/2+ rrB/8. These values give 
vr  and J r  The frequency is the same as that of the hydrogen 
atom and ( T ) = 0 . 5 0 0 a . u . .  The potential energy is - 1 . 0 0 - 1 / R  and -Ee ; - -  
0.500 + 1/R, the correct value at this level. 

These results in the limits may be compared to those obtained using the quantiz- 
ation procedure for H~- in the JWKB method [6]. With the Keller and Maslov 
rules [11], the quantum conditions are found to be Jr = J .  = h/2, for all values 
of R. This agrees with the above result at R = oo. However  at R = 0, it is definitely 
wrong since the JWKB method for hydrogenic atoms gives the right energy only 
if there is a false orbital angular momentum with ( l + 1 / 2 )  2 replacing l(l+ 1) 
[12]. The assumption that C is no greater than 1/R allows the calculation that 
J ,  = 0. The basis for this is easily seen by examining Eq. (6). The results given 
below will justify the assumption. 

To make calculations at other values of R, it is most convenient to pick a value 
of B corresponding to some exact value of R and Ee;. Then C is varied until 
Eq. (17) is satisfied in the form 

4 -.12;4 
zX . . . .  (22) Ee, \7-*(/ U 4 -  U5 +-2 

where A is the exact value from the literature [10]. 

Table 1 shows the results of such calculations for a numbr of different values of 
B. The calculated values of C can now be checked using Eq. (6). 

The separate components for C can be found from the distribution function. 

-2 (cos  On-cos Ve~ 

V,(I4-I 4 
-~--]7~;R2 /= C +1--E7~; \---~4 .1. (24) 

Setting the left hand side of Eq. (24) equal to zero gives an equation which is 
satisfied only by a definite value of C for each value of B. 

When this equation is solved by iteration, it is found that the same value of C 
is calculated as in Table 1, providing R is greater than about 4ao. For R = 3.00 ao, 
C is calculated as -0 .092 ,  and for R = 2.00, C is calculated as +0.050, and it is 
no longer safe to ignore the left hand side of Eq. (24). Calculation of (LA" Lu) 
from (24), using the C values from Table 1, shows that it is small, but not zero. 
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Table 1. Parameters for H~ as a function of R by old quantum theory 

R. G. Pearson 

R B '~ C b A ~ J t + J ~  

0.000 0o 0o 0.000 1.000 h 
0.050 40.12 22.00 0.011 1.037 
0.100 20.22 9.70 0.019 1.061 
0.500 4.611 0.950 0.187 1.129 
1.00 2.755 0.183 0.330 1.209 
1.50 2.135 0.085 0.410 1.330 
2.00 1.814 0.038 0.454 1.436 
3.00 1.464 -0 .044 0.479 0.960 
4.00 1.256 -0 .097 0.450 0.995 
6.00 0.9824 -0.197 0.323 1.018 
7.00 0.8811 -0.320 0.267 1.010 

10.00 0.6660 -0.558 0.173 1.004 
12.50 0.5516 -0.740 0.139 1.000 
o0 0.000 -1 .000 0.000 1.000 

" B  = - 4 ~ R E e l .  
b Calculated to give exact value of A. 
c - A  = R / EeI( 6E  / 6R  ) from Ref. [10]. 

The values of ( L  A �9 LB) are not quantized, nor are they expected to be since this 
orbital angular momentum is strongly quenched. 

The next step is the calculation of Jc and Jr, using equation (19). Again, for 
convenience, the exact values of R and EeZ are used for each value of B. Table 
1 shows the sum, Jc +J r ,  calculated in this way. If this sum is equal to h, then 
the quantum condition (13) is valid, and the exact Eet could be calculated from 
Eq. (21). It can be seen that for negative C, Jr ~- h, but that for positive C, 
the agreement is very poor for R > 0.05 ao. 

5. Discussion 

The failure that is found when C becomes positive is not unexpected. At this 
point the two classical orbits coalesce, as shown in Fig. 1. This causes a catastrophe 
in the quentum conditions, since suddenly the frequency v r is halved, or con- 
versely Jr  is doubled. This is an artificial effect since obviously both in wave 
mechanics and in classical mechanics, no dramatic change would occur near C = 0. 
As R approaches zero, the discrepancy should disappear, as shown in the Table. 
However  it is somewhat surprising that even at R = 0 . 0 5 ,  J~+Jr has not 
approached h more closely. 

In semi-classical theory there is a remedy for avoiding the catastrophe due to a 
doubling of the allowed coordinate [13-15]. This is to include a quantum 
mechanical correction for tunnelling through a potential energy barrier, as in 
Fig. lb,  and a correction for reflection from the top of the barrier, as in Fig. la. 
Then the factor f changes smoothly from 1 to 2 over a range of R values. If o) 
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is the transmission coefficient, 

f =  1+~o = 1+(1  + e-2 '~)  -1 (25) 

where e depends on the shape of the barrier. 

When C = 0, e = 0 and w = 1/2. When R = 2.00 or 3.00 in Table 1, J~ and J~, 
are of comparable magnitude. Therefore  the tunnelling correction at R = 3.00 
will be too large, and the reflection correction at 2.00 will be too small, though 
in the right direction. The improvement  in the value of (Jc + J , )  at R = 2.00 will 
be more  than offset by a worsening at R = 3.00. 

While tunnelling does not seem to be a useful correction, it might still be possible 
to derive or invent a quantum condition that gives bet ter  results. Still the anomaly 
at C = 0 cannot be entirely avoided. For example, 14 becomes infinite at C = 0. 
From Eq. (22) we see that 

BI2 + 2 2 
k = -  I, ~ B - ~ "  (26) 

If C becomes zero between R = 2.00 and 3.00, as Table 1 suggests, then A ~ 0.72. 
But this is much larger than the exact values for A in this range (A ~ 0.46). 

Thus a plot of Ee~ vs. R will show a break, or glitch, in this region. For  small 
negative values of C, the energy will be too positive, and for small positive values 
of C, the energy will be too negative. The alternative would be for a plot of C 
vs. R to be discontinuous, with C = 0 an excluded value. 

In view of the difficulties discussed above, it must be concluded that the old 
quantum theory is not useful for quantitative discussion of chemical bonding. It 
is a frustrating, and interesting, fact that the difficulties are most severe in the 
region of Req, of greatest importance in bonding. Still it must be noted that the 
old quantum theory does predict the existence of the chemical bond. Even with 
the inadequate quantum conditions available, it is clear that a hydrogen atom 
will strongly bond to a proton. It is also noteworthy that the old quantum theory 
works well at values of R greater  than about 4a0. 
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